Humans Learn Using Manifolds, Reluctantly
نویسندگان
چکیده
When the distribution of unlabeled data in feature space lies along a manifold, the information it provides may be used by a learner to assist classification in a semi-supervised setting. While manifold learning is well-known in machine learning, the use of manifolds in human learning is largely unstudied. We perform a set of experiments which test a human’s ability to use a manifold in a semisupervised learning task, under varying conditions. We show that humans may be encouraged into using the manifold, overcoming the strong preference for a simple, axis-parallel linear boundary.
منابع مشابه
Isometric Multi-Manifolds Learning
Isometric feature mapping (Isomap) is a promising manifold learning method. However, Isomap fails to work on data which distribute on clusters in a single manifold or manifolds. Many works have been done on extending Isomap to multi-manifolds learning. In this paper, we proposed a new multi-manifolds learning algorithm (M-Isomap) with the help of a general procedure. The new algorithm preserves...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملThe Role of Manifold Learning in Human Motion Analysis
Human body is an articulated object with high degrees of freedom. Despite the high dimensionality of the configuration space, many human motion activities lie intrinsically on low dimensional manifolds. Although the intrinsic body configuration manifolds might be very low in dimensionality, the resulting appearance manifolds are challenging to model given various aspects that affects the appear...
متن کاملDeep Unsupervised Clustering Using Mixture of Autoencoders
Unsupervised clustering is one of the most fundamental challenges in machine learning. A popular hypothesis is that data are generated from a union of low-dimensional nonlinear manifolds; thus an approach to clustering is identifying and separating these manifolds. In this paper, we present a novel approach to solve this problem by using a mixture of autoencoders. Our model consists of two part...
متن کامل